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SUMMARY 

The tensile stress-strain behavior of a variety of graphite/epoxy laminates 

was examined. Longitudinal and transverse specimens from eleven different layups 

were monotonically loaded in tension to failure. Ultimate strength, ultimate 

strain, and stress-strain curves were obtained from four replicate tests in each 

case, Polynominal equations were fitted by the method of least squares to the 

stress-strain data to determine average curves. Values of Young's modulus and 

Poisson's ratio, derived from polynomial coefficients, were compared with laminate 

analysis results. 

While the polynomials appeared to accurately fit the stress-strain data in. 

most cases, the use of polynomial coefficients to calculate elastic moduli appeared 

to be of questionable value in cases involving sharp changes in the slope of the 

stress-strain data or extensive scatter. 
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INTRODUCTION 

The study of the tensile fracture of continuous fiber laminated composites can 

be roughly divided into two categories: unnotched fracture and notched fracture. 

In unnotched composites, failure appears to be controlled in part by the compli- 

cated stress states occurring at the free edges. The edge stresses are determined 

not only by the presence of different ply orientations, but by the order of the ply 

orientations or stacking sequence. Failure models which are used to predict 

unnotched failure require some information about the behavior of the constituent 

laminae. Simple models need only elastic constants while more sophisticated models 

might use the nonlinear response of the individual laminae. In the fracture of 

notched composites, notch geometry plays a predominant role. In this category 

stacking sequence is of considerably less importance than flaw shape in determining 

failure (ref. 1). Notched composite failure models generally require the laminate 

unnotched strength and elastic constants. 

The primary objective of this study was to provide elastic constants and 

unnotched strengths for analysis of the notched strengths of a wide variety of 

graphite/epoxy laminates. In order to achieve this objective, longitudinal and 

transverse specimens of each layup were monotonically loaded in tension to 

failure. The use of polynomial equations to model the stress-strain curves which 

were generated was also explored. Elastic constants were obtained from the 

polynomial coefficients and compared with laminate analysis results to evaluate the 

effectiveness of this approach. 
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SYMBOLS 

a. 
lxx 

aixy 

EX 

(Etan) x 

El 

E2 

F 
tu 
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R2xx 

R2xy 

vf 

E 
X 

“Y 

%U 

vxY 

(Vtan) xy 

V 
12 

ith coefficient of the longitudinal strain polynomial, 
(GPa)-i 

ith coefficient of the transverse strain polynomial, 
(GPa)-i 

Young's modulus, GPa 

tangent modulus, GPa 

lamina Young's modulus, fiber direction, GPa 

lamina Young's modulus, perpendicular to fibers, GPa 

ultimate tensile strength, MPa 

lamina shear modulus, GPa 

adjusted R2 statistic of the longitudinal strain polynomial 

adjusted R2 statistic of the transverse strain polynomial 

fiber volume fraction 

longitudinal strain 

transverse strain 

ultimate tensile strain 

Poisson's ratio 

tangent Poisson's ratio 

lamina Poisson's ratio 

u 
X 

longitudinal stress, MPa 



EXPERIMENTAL PROCEDURES 

Material and Specimens 

The material used in this investigation consisted of T300 fibers embedded in a 

matrix of 5208 epoxy. Four sheets of each of eleven different laminates (table I) 

were fabricated. Laminate stacking sequences were chosen to provide a large number 

of permutations of both ply orientation and percentage composition of plies. Ply 

orientations of O", 90°, and 245" only were used. Thirty-one specimens were cut 

from each composite sheet and numbered according to the specimen code as shown in 

figure 1. The dimensions of each specimen type are listed in the table below. 

Specimen Specimen 
type direction 

A Longitudinal 

B Longitudinal 

C Longitudinal 

D Longitudinal 

E Transverse 

Specimen dimensions 

Length (mm) Width (mm) 

914 305 

419 102 

305 50.8 

254 25.4 

254 25.4 

1 Specimens 
per sheet 

3 

10 

6 

6 

6 

For the purposes of this study, only specimens of types D and E were used. Some 

specimens, as noted in the data tables, were tested with fiberglass end-tabs 

63.5 nm long, 25.4 mn wide, and 2.6 mn thick with a 12" taper. 

The manufacturer supplied C-scans, matrix mass fraction, void content, and 

laminate thickness for each sheet. The C-scans indicated that the sheets were free 

of objectionable flaws. Void content for the various laminates ranged as high as 

1.27 percent but averaged 0.18 percent. Fiber volume fraction for each sheet was 

calculated with assumed fiber density of 1.740 gm/cm3 and matrix density of 

1.263 gm/cm3. Thickness, fiber volume fraction, and moisture mass fraction values 

for each sheet appear in table II. Because of the considerable period of time 

between manufacture and testing of the specimens, it can be safely assumed that the 

moisture mass fraction values typify steady state moisture content. 



Test Procedure and Equipment 

Specimens were tested in a single channel, closed loop, servo controlled, 

hydraulically activated testing machine equipped with hydraulic grips. Cellulose 

acetate shims 1.5 mn thick were placed between the specimen and grip faces, and 

gripping pressure was adjusted to prevent damage to the ends of the specimens. The 

controller was set to operate with feedback from the load cell and the command 

.signal was provided by an external function generator set on ranp mode. The ramp 

rate was chosen so as to strain the specimens at approximately 1O-4 mn/mm/second. 

Strains were measured by bonded foil strain gages with 3.2 rrm gage length. 

One longitudinal and one transverse gage were mounted on each side of the 

specimen. The longitudinal gages were wired in series and connected so as to 

constitute one arm of a Wheatstone bridge. The transverse gages were similarly 

connected to a separate bridge. 

Data for each test were sampled and recorded by a digital data acquisition 

system (ref. 2). Analogue voltage signals from the load cell conditioner, strain 

gage circuits, and a peak meter connected to the load cell conditioner were 

sequentially sampled at fixed intervals by a scanner. An integrating digital 

voltmeter converted the analogue inputs, and the data were recorded on an 

incremental magnetic tape recorder and a digital paper tape printer. 

DATA ANALYSIS 

Data Reduction 

Information recorded on magnetic tape by the data acquisition system was 

copied onto a computer file and processed by a data reduction program. Because the 

analogue signals varied with time but were sampled sequentially rather than instan- 

taneously, data within a scan were interpolated to coincide in time. The linear 

interpolation was considered to be sufficiently accurate due to the linear nature 

of the command signal supplied to the testing machine controller. All data 

recorded prior to loading and after specimen failure were automatically eliminated 

by the data reduction program. Load was converted to stress using a 
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cross-sectional area based on an assumed ply thickness of 0.14 mn and the measured 

specimen width. The ultimate tensile strength was determined from the maximum 

value recorded on the peak meter channel. 

Curve Fitting 

The stress and strain data were fit to polynomial equations of the form: 

Ex = aOxx + alXXaX + 82xX0x2 + l + anxxQxn 

ey = aoxy + a1xycJx + a2xyux 2, . . . + anxyuxn 

by Gauss' least-squared-error method. The x and y subscripts refer, respec- 

tively, to the directions parallel with and perpendicular to the applied load. To 

satisfy the requirement that the stress-strain curves have inflection points at 

zero load, the coefficients a2xx and a2xy were set to zero prior to initiating 

the least squares procedure. The adjusted R2 statistic (ref. 3) was calculated for 

polynomials of various orders to provide a quantitative measure for deciding which 

order to use. It was decided that a fourth order polynomial gave the best fit with 

the fewest parameters. The stress-strain parameters and the associated adjusted R2 

statistics for each specimen appear in table III. 

Figure 2 shows the stress-strain curve for specimen 2A2E with the data plotted 

as symbols and the polynomials drawn as solid lines to give an example of the 

accuracy of the method. The rest of the specimens are plotted in groups according 

to stacking sequence (fig. 3-27). Data for each specimen are distinguished by the 

use of different symbols, and the polynomial curves in each case were determined by 

averaging the coefficients of the polynomials fit to each specimen (see table III). 

Figure 28 shows the tangent modulus and tangent Poisson's ratio plotted 

against longitudinal strain for specimen 2A2E. The polynomial derivative curves: 

and (u tan xy = ) 



are drawn as solid lines while the data, calculated using a first-order backward 

difference method, are plotted as symbols. The rest of the specimens are plotted 

in groups according to stacking sequence (fig. 29-53). Data for each specimen are 

distinguished by the use of different symbols as before and the polynomial deriva- 

tive curves in each case are again determined by averaging the coefficients of the 

individual derivatives. 

Laminate tensile elastic constants were determined from the polynomial 

equations which were fit to the digital data. Young's modulus was derived from the 

longitudinal strain polynomial: 

-1 
= alxx 

and Poisson's ratio was derived from the longitudinal and transverse strain 

polynomials: 

vxY = {- (~yl(gg} 
=-a 

uX 
=o lxy’alxx 

These constants along with the unnotched tensile strength and ultimate strain for 

each specimen appear in table IV. 

Lamina elastic constants required for a laminate analysis (ref. 4) were 

calculated using laminate elastic values (from table III) for [O]s, [901a, and 

[+45]231aminates. The lamina shear modulus was determined using Rosen's method 

(ref. 5). The constants used in the laminate analysis appear in the table below. 

El 1 129.4 GPa 



Experimental and theoretical values of Young's modulus and Poisson's ratio 

appear in table V for comparison purposes. Cordell plots (ref. 6) have been drawn 

for the experimental values of Young's modulus (fig. 54), Poisson's ratio (fig. 

55), and the unnotched tensile strength (fig. 56). A fourth order polynomial 

surface has been determined for each plot using Gauss' least-squares method to 

provide an aid for visualizing the material behavior. Data are plotted as symbols 

and the polynomials are plotted as lines of constant ply percentage. 

DISCUSSION OF RESULTS 

Stress-Strain Curves 

Polynomials determined by the least squares method are used to represent the 

stress-strain data for several reasons. The primary reason is that the entire 

curve can be modeled with only a few parameters. Polynomials from several speci- 

mens of the same layup can be averaged quite simply by averaging coefficients, 

thereby also simplifying the determination of average elastic moduli. The calcula- 

tion of the parameters involves no user bias beyond the selection of the highest 

order, and statistics (such as the adjusted R2) are available as indicators of the 

accuracy of fit to guide in selecting the highest order. Derivatives are easy to 

calculate and the entire procedure can be automated on a digital computer. 

Residual plots are desirable for determining whether differences between data and 

the polynomial fit are systematic or random. It was decided, however, that the 

nature of the stress-strain behavior would yield systematic differences regardless 

of polynomial order so the adjusted R2 statistic alone was used. Fourth order 

curves were considered to best meet the criterion of maximizing the adjusted R2 

while minimizing the number of parameters. Figure 2 shows just one example of 

polynomial fits to longitudinal and transverse stress-strain data. 

Data and curves for [O]s specimens are shown in figure 3 for tests performed 

on un-tabbed specimens and in figure 4 for tests performed on end-tabbed speci- 

mens. The low failure strains observed in tests performed without tabs indicated 

that the gripping method might have contributed to early failure. Tests run on 

specimens with tapered tabs showed no significant differences in ultimate stress or 

strain or in polynomial coefficients. One study (ref. 7) has shown that tapered 
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tabs can debond and contribute to early failure. In the case of the [O]s laminate, 

the tabs debonded from the specimen but did not appear to affect the failure mode. 

Figure 5 shows the results for tests of the [9O]s laminate. Each specimen 

failed neatl, y at a grip edge. While the curves appear to fit the data very well, 

examination of the adjusted R2 statistics in table III reveals that transverse 

strain data is not fit well. This is due to a very poor signal-to-noise ratio 

resulting fr om the extremely small strain levels. The data may also be biased 

because the effect of transverse sensitivity was not taken into account. The 

transverse sensitivity factor was not recorded when the gages were applied. Curves 

for the [-+45],S laminate shown in figures 6 and 7 are extremely nonlinear but 

seem to be well fit by the polynomials. 

The results of tests on so-called quasi-isotropic laminates, [45/O/-45/9O]S 

and [45/90/-45/O]S, are shown in figures 8 and 9. The laminate with 90' plies in 

the center exhibits significantly lower failure stresses and strains than the 

laminate with O" plies in the center, and shows distinctly nonlinear behavior prior 

to failure. Examination of failed specimens revealed extensive delamination of the 

-45/90 interfaces for specimens with 90" plies at the center while specimens with 

0' plies in the center showed only minor delamination at one 45/90 interface. 

Approximate interlaminar stresses were calculated using the method of Pipes and 

Pagan0 (ref. 8). Calculations for the [45/O/-45/9O]S laminate show very high 

tensile stresses normal to the interface between the -45" and 90" plies. 

Calculations for the [45/90/-45/O]S laminate show compressive stresses at every 

interface except for the 45/90, which has a very slight tensile stress. The 

nonlinear behavior evident in figure 8 is due to extensive delamination growth 

which contributed to the low failure stress. In order to obtain more accurate 

elastic constants, polynomials were fit only to stress-strain data recorded prior 

to the onset of delamination for the [45/O/-45/9O]S laminate. 

Figures lo-13 show the stress-strain behavior of [90/O12S, [O/90]2S, 

[02/9O/O]S, and [902/O/90]S laminates. The transverse strain is small in each 

case bacause of the presence of 90" plies and absence of +45' plies. Only one 

laminate, [902/O/90]S, figure 13, shows distinct nonlinearity in the longitudinal 

strain. All of the specimens of these layups broke in the test section in a nearly 

straight line. Specimens of the [0,/9O/O]S layup had very small delaminated 

areas at the break. 
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Stress-strain curves for [90/45/90/-45]S, [45/90/-45/9O]S, and 

[45/90/-45/9012S laminates shown in figures 14, 15, and 16 exhibit nearly 

identical behavior. Failure surfaces for all three laminates appear the same with 

straight breaks in 90" plies and pull out in 45" plies. 

Figures 17-20 show the behavior of [O/45/0/-45]S, [45/O/-45/O]S, and 

[45/O/-45/O]2S laminates and the [45/O/-45/O]2S laminate with tapered end 

tabs. While all four sets of curves appear to have identical slopes, each laminate 

failed at a different strain. Interlaminar normal stresses appear to be the 

distinguishing factor. The Pipes and Pagan0 approximation (ref. 8) indicates that 

the interlaminar normal stresses in the laminate with the highest failure strain, 

[O/45/0/-45]S, are compressive. The same method indicates that normal stresses 

in the laminate with the lowest failure strain, [45/O/-45/O]S, are tensile. The 

interlaminar stresses in the [45/O/-45/O],S laminate are intermediate in size, 

but postmortem examination of the end-tabbed specimens revealed that the end-tabs, 

instead of debonding, pulled the outer plies completely free in- the region at the 

edge of the tab. All failures of the end-tabbed specimens occurred very near the 

tabs. Postmortem examinations revealed that delaminations were present, to some 

extent, in the failed region of every specimen in this group. There is no clear 

evidence, however, to indicate whether the delaminations contributed to or were 

caused by failure of the specimens. 

Figures 21 and 22 show the behavior of the [+45/0/*45/01S, 

['45/0/r45/0/?45/0/+45]T, [+45/90/+45/9O]S, and [+45/90/745/90/+45/90/+45]T 

laminates. Although layup errors occurred for this group of laminates (see table 

I), there appear to be no significant differences in behavior between the correctly 

and incorrectly stacked laminates. Specimen 5D2E failed at a very low stress and 

strain, but no conclusions may be drawn from a single test. The failure surface 

shape did not appear to depend on the stacking error. 

Stress-Strain behavior Of the [02/45/O,/-45/02]S laminate iS shown in figure 

23. All four specimens failed in the grip. Figure 24 shows the behavior of the 

same laminate tested with end tabs. In this case end tabs solved the gripping 

problem; none of the specimens failed in the grips and there was substantial 

improvement in the failure stress and strain. The behavior of the 



[902/45/902/-45/902]S laminate is shown in figure 25. Although there is little 

difference between the failure stresses of the specimens, the range of failure 

strains is quite large. Since significant differences between specimens appear 

only above a strain of 0.004, approximately the ultimate strain of the [90]s 

laminate, it would seem that damage to the 90" plies is responsible. 

Stress-strain curves for [(90/0)2/45/O/-45/O& and [(O/90)2/45/90/-45/9O]S 

laminates appear in figures 26 and 27. There is very little variation in ultimate 

stress, ultimate strain, or the appearance of the stress-strain curve between 

replicate tests for either laminate configuration. 

Stiffness and Poisson's Ratio Curves 

In order to display the manner in which stiffness and Poisson's ratio change 

with increasing strain, derivatives of the least squares polynomials are plotted. 

Figure 28 shows the results for specimen 2A2E. The symbols in that figure and 

subsequent figures represent slopes between successive pairs of scans determined by 

a first-order backward difference scheme. They show both the degree of agreement 

between data and polynomial derivatives, and the extent to which slight scatter in 

the raw data can be magnified by a simple finite difference procedure. The least 

squares method, it should be noted, does not involve fitting derivatives. 

Polynomial coefficients are determined only by minimizing discrepancies between 

data and the curve. The polynomial derivative curves should, therefore, be 

considered with this limitation in mind. 

Tangent modulus and Poisson's ratio curves for the unidirectional laminates 

appear in figures 29-31. The [O]s laminate stiffness increases significantly with 

increasing strain while Poisson's ratio drops correspondingly. It appears from the 

data in figures 29 and 30 that even though the stiffness of the [O]a laminate has 

non-zero slope at zero strain, the polynomial adequately models the stiffness of 

the [Ola laminate. The results for the [9OJa laminate (fig. 31) indicate a 

constant stiffness over nearly the entire strain range, but the lack of transverse 

strain sensitivity correction makes the plot of Poisson's ratio suspect. Plots of 

the [*45],S laminate behavior in figures 32 and 33 show stiffness decreasing with 

increasing strain, while Poisson's ratio increases to nearly 1. The Poisson's 

ratio plots of the [+45]zS laminate show the value of using polynomials to 
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ameliorate the problem of data scatter caused by digital data acquisition. 

Although the curve-fittin.g method used is not perfect, it appears to work well for 

the [OJa, [9O]a, and [+45],3 laminate stress-strain data from which the lamina 

elastic properties are derived. 

The disparity between the responses of the two different quasi-isotropic 

laminates mentioned previously is apparent in the plots of figures 34 and 35. The 

[45/O/-45/9015 laminate exhibits an abrupt stiffness drop at 0.004 strain. At 

that strain level scatter increases substantially. The ultimate strain of the 

[9O]a laminate (table V) is about 0.0036. This suggests that splitting in the 90" 

plies may be responsible for the decrease of the laminate stiffness and the scatter 

in the data. An edge replicate obtained from one specimen indicates that cracks 

were present in the 90° plies at a strain as low as 0.0038. Also, an edge 

replicate indicated that delaminations were present at a strain as low as 0.0045. 

Although a report by O'Brien, et.al. (ref. 9) suggests that matrix cracking in 

off-axis plies contributes relatively little to laminate stiffness loss, it should 

be noted that small laminate stiffness changes are more pronounced when the tangent 

to the stress-strain curve, rather than the secant, is plotted. The relationship 

between tangent modulus and secant modulus is: 

E E 
tan = set 

while changes in the tangent modulus are related to changes in the secant modulus 

by: 

$(Etan)= 2 k(Esec)+ ' 5 (Ese$. 

Thus the tangent modulus is more than twice as sensitive to stiffness changes as 

the secant modulus. 

The failure of the least squares procedure to adequately model the derivatives 

is manifest in figure 34. The polynomial derivative curve does not conform to the 

backward difference results. The plots of the [45/90/-45/0]3 laminate response 

(fig. 35) show a more gradual stiffness loss and Poisson's ratio change, which 

initiates at the 0.006 strain level. Although an initial edge replicate of one 

specimen shows the presence of 90° ply cracks at zero stress, possibly due to 

specimen machining, the earliest indication of additional splitting in 90° plies 
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occurs in an edge replicate taken at a strain of 0.0063. Delaminations do not 

appear below a strain of 0.007 and do not grow extensively at higher strains. For 

this laminate, the polynomial derivative curves agree with the finite difference 

results. Both quasi-isotropic laminates exhibit splitting in the 90' plies, but 

the laminate with the two adjacent 90" plies begins to split at a lower strain than 

the one with isolated 90" plies, which are not at the surface. 

The plot of the tangent modulus for the [90/O]2S laminate (fig. 36) shows a 

slight stiffness drop and a great deal of scatter starting at a strain of 0.004, 

while the corresponding plot for the [0/9O],S laminate (fig. 37) exhibits nearly 

the same stiffness loss, but displays comparatively little scatter. The 90" plies 

of the [0/90]2S laminate, two of which are adjacent, appear to begin splitting at 

the same strain as the 90" plies of the [90/0]2S laminate, each of which is 

isolated from the others. Two of the 90" plies in the [90/0]2S laminate are at 

the surface, however, and are each constrained by only one adjacent ply. The 

relative proximity of the 90° plies to the surface mounted strain gages apparently 

determines the relative magnitude of the scatter. Plots of the [0,/9O/O]S and 

[902/O/90]S tangent moduli shown in figures 38 and 39 appear to support this. 

The [902/O/90]S laminate, with two adjacent 90" plies at each surface, shows a 

stiffness drop and considerable scatter at a strain of about 0.0035. The tangent 

modulus plot in figure 39 indicates the inability of the polynomial to model 

derivatives when the data is ill-behaved. 

Stiffness and Poisson's ratio plots for the [90/45/90/-45]S, 

[45/90/-45/9O]S, and [45/90/-45/9012S laminates shown in figures 40, 41, and 42 

exhibit nearly identical behavior. The stiffness of each laminate drops at 

approximately the same 0.005 level of strain while scatter increases in the 

Poisson's ratio plots at that strain. Two of the laminates have two adjacent 90" 

plies at the center while the other has isolated 90' plies at the surface. 

With the exception of the plots for the end-tabbed specimens, the tangent 

modulus and Poisson's ratio plots for the [O/45/0/-45]S, [45/O/-45/O]S, and 

[45/O/-45/O]2S laminates shown in figures 43, 44, 45, and 46 are similar. The 

source of the scatter in the plots of figure 46 is not apparent. 
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The error in the stacking sequence of laminate number five (see table I) had 

no discernable effect on the moduli and Poisson's ratios plotted in figures 47 and 

48. In each case the polynomial adequately modeled the material behavior by 

smoothing scatter while retaining the essential character of the data. _ 

A comparison of figures 49 and 50 shows that end-tabs, in additi.on to 

improving strength, reduce data scatter and enable the polynomial to accurately fit 

the tangent modulus and POiSSOn's ratio for the [02/45/O,/-45/02]S laminate. 

Since this laminate is composed primarily of O" plies, it is not surprising that 

the stiffness increases with increasing strain as in the [O]a laminate. The plots 

of the [90,/45/90,/-45/9O,]S stiffness and Poisson's ratio shown in figure 51 

show linear behavior to a strain of about 0.0035 at which point the laminate 

suffers a substantial stiffness loss. The 90° plies at the surface of the laminate 

again contribute to data scatter. 

The [(90/O)2/45/O/-45/O]S laminate plots in figure 52 show.stiffness drop 

and scatter at a strain of about 0.005 because of the 90" plies at the surface. 

The [(O/90),/45/90/-45/9O]S laminate , with two adjacent 90° plies at the center, 

also exhibits a stiffness drop at a strain of 0.005, as seen in figure 53, but 

comparatively little scatter. 

Experimental values of Young's modulus and Poisson's ratio for each laminate 

were calculated using the linear terms of the least squares polynomials for each 

specimen. These laminate elastic values and the average ultimate tensile strength 

of each laminate are displayed in 'figures 54, 55, and 56 in the form of Cordell 

(ref. 6) plots. Cordell plots are two-dimensional projections of three-dimensional 

plots presented so as to enable the viewer to visualize the original 3-D form. 

Data points in each figure are plotted as symbols. A fourth order polynomial 

surface, plotted as solid lines, was determined for each figure by the method of 

least squares to aid in visualizing the behavior of the laminate constants 

presented. In some cases there are laminates which have different stacking 

sequences but possess the same percentages of O" plies, 90' plies, and 245" plies. 

In the plots of Young's modulus and Poisson's ratio, the differences between 

experimental values in these cases are so slight as to be inconsequential and the 

fourth order surfaces were calculated using all the data points. It is obvious 

from figure 56, however, that two laminates with the same percentages of 0" plies, 
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90" plies, and +45" plies can have substantially different strengths. The surface 

plotted in figure 56 was fit only to the greatest value corresponding to a given 

ply composition. Although the plots in figures 54 and 56 appear to have the same 

general shape, examination of table V will show that failure strains vary among the 

different laminates. 

Laminate Analysis 

Classical laminate analysis was performed for each laminate in this study. 

Values of Young's modulus and Poisson's ratio from the analysis appear in table V 

with experimentally determined values. Although classical laminate analysis 

predicts laminate constants to within a few percent of measured values in most 

cases, there are several substantial deviations which must be explained. The 

largest of these, the error in the [9O]s Poisson's ratio prediction, suggests that 

the omission of transverse sensitivity corrections may have led to biases in 

strain data which appear as incorrect experimental laminate constants. Although 

the transverse sensitivity coefficient is unknown, a typical value of 1 percent is 

sufficient to account for the Poisson's ratio errors for the [901s, [0,/90/0]9, 

[90/45/90/-4513, [45/90/-45/9O]s, [45/90/-45/90]2s, and 

[~45/90/745/90/~45/90/+451T 1 ami nates. The Poisson's ratio error for the 

[902/45/902/-45/902]s laminate is only halved by a transverse sensitivity of 1 

percent and other errors are relatively unaffected. 

While the transverse sensitivity of the strain gages appears to be responsible 

for at least part of the disagreement between experimental and laminate analysis 

values of elastic constants, it is not sufficient to explain all of the errors. 

Another possible source of error is the least squares curve fitting procedure from 

which experimental laminate constants are determined. As mentioned earlier, there 

appear to be cases in which the polynomials poorly model the slopes of the stress- 

strain curves. The most obvious examples are the Poisson's ratio plot of the 

[45/O/-45/9013 laminate in figure 34 and the tangent modulus plot of the 

[902/O/90]s laminate in figure 39 for which the polynomial curves and finite 

difference points clearly differ. 
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SUMMARY OF RESULTS 

The tensile behavior of a variety of T300/5208 graphite/epoxy laminates was 

examined. Stress-strain curves were plotted for each specimen for uniaxial 

monotonic loading to failure. Fourth order polynomial curves were fit to the data 

in order to get average stress-strain curves. Stiffness and Poisson's ratio, 

obtained by differentiating the stress-strain polynomia.ls, were plotted against 

longitudinal strain for each laminate. Experimentally determined values of Young's 

modulus and Poisson's ratio were compared with classical laminate analysis results. 

Except for a few laminates, classical laminate analysis and experiments gave 

the same elastic constants. Predictions and measurements of Poisson's ratio 

differed for only a few laminates with very low Poisson's ratios. A combination of 

low transverse strain and the failure to account for the transverse sensitivity of 

the foil strain gages appeared to be primarily responsible for the difference 

rather than any inherent limitation of the laminate analysis. Measured and 

predicted values of Young's modulus differed in cases where sharp changes in the 

slope of the stress-strain curve limited the ability of the polynomial to model the 

slope. Overall, the laminate analysis results were within the experimental 

accuracy of the measurements. 

Sharp changes in the slopes of stress-strain curves occurred only for 

laminates containing 90° plies. Laminates with four adjacent 90' plies at the 

center or two adjacent 90" plies at the surface exhibited stiffness drops at a 

strain approximately equal to the ultimate tensile strain of the [9O]a laminate. 

Those with two adjacent 90" plies at the center or isolated 90° plies at the 

surface showed stiffness loss at strains between 0.004 and 0.005 while laminates 

with isolated 90" plies not at the surface experienced stiffness loss at strains 

between 0.006 and 0.007. 

While the polynomial method did not adequately model the slopes of ill-behaved 

stress-strain curves, it accurately modeled the slopes of the [Ola, [9O]s, and 

[?45]2S stress-strain curves from which lamina elastic constants were deter- 

mined. Because differences between laminate analysis predictions and experimental 

data analysis results appear to be due to data analysis limitations, it is felt 

that laminate elastic constants from the laminate analysis should be used when 

initial moduli are required. 

15 



Because of the large variety of laminates, there appears to be no simple 

failure model which can accurately predict tensile strength in every case. In 

several cases, delamination growth or gripping difficulties caused laminates to 

fail at. unexpectedly low strains. Because tapered end-tabs exert tensile stresses 

normal to the specimen surfaces, their use improved gripping only for the 

[02/45/02/-45/02]s laminate which has compressive interlaminar normal stresses 

when tested in tension. In most instances failure strains fell in the range of 0.9 

percent to 1.1 percent for both matrix and fiber dominated layups. 

16 
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TABLE I. - LAMINATES 

t- LAMINATE STACKING SEQUENCE 
1 LAMINATE 

NUMBER SHEET AS ORDERED 

2 A,B,C,D [90/45/90/-451s 

3 A,B,C,D [+4512s 

A 
4 

[45/O/-45/9O]s 

B,C,D [45/O/-45/9O]s 

A,B ,C k45/0/+45/ulS 
5 

D c+45/0/+45mS 

6 A,B,C,D L-WQS 
7 A,B,C,D [(90/O) ,/45/%45/Ols 

8 A,B,C,D c45/0/-45/01S 

9 A,B,C,D [45/%45/01,s 

10 A,B,C ,D [02/9w01s 

11 A,B,C,D [O~/~~/~~/-~~/~~~s 

12 A,B,C,D [o&j 

AS DELIVERED 

[90/45/90/-451s 

[45/90/-45101s 

[45/O/-45/9O]s 

m[+45/o/+45/8]s 
I 

L-WOI,, 

c (90/O) 2/4wv-45/01s I 

18 



TABLE II. - MATERIAL CHARACTERISTICS 

-aminate Number 

2 

3 

4 

5 

6 

7 

- 
Sheet Thickness, mn Vf, % Moisture, % 

A 1.07 67.5 0.7 

B 1.04 66.9 0.9 

C 1.12 66.1 1.0 

D 1.04 64.6 0.7 

C I 1.55 1 63.2 1 0.6 
I I I 

D I 1.57 1 61.0 1 0.8 

A 1 1.14 1 62.2 1 0.7 

B 
I 

1.14 1 63.6 1 0.9 

c I 1.17 \ 62.3 \ 0.8 1 

D 1 1 62.7 1 0.8 

D 1 2.16 1 63.8 1 0.6 

19 



TABLE II. - CONCLUDED 

8 

A 2.24 62.4 0.5 

B 2.18 62.7 0.7 
11 

C 2.18 64.0 0.4 

D 2.18 63.6 0.6 

A 1.19 61.6 0.6 

B 1.19 62.9 0.8 
12 

C 1.19 63.3 0.6 

D 1.19 63.9 0.7 

Laminate Number 

20 



TABLE III. - TENSILE STRESS-STRAIN PARAMETERS 

Specimen aoxx alxx,GPaml 
Number 

a3xx,GPa-3 a4xx,GPa-4 R2xx aoxy alxy,GPa-1 a3xy,GPa-3 a4xy,GPa-4 R2xy 

(A) co18 
12A20 -0.000008 0.007984 -0.000539 0.000241 0.999998 -0.000008 -0.002732 0.000344 -0.000147 0.999960 

128213 .000028 .007849 -.000574 .000254 .999996 -.000011 -.002355 .000286 -.000108 .999986 

12C20 .000002 .007543 -.000480 .000204 .999998 -.000022 -.002354 .000335 -.000151 .999969 

12D20 -.000008 .008000 -.000611 .000305 .999997 - .000009 -.002403 .000384 -.000190 .999969 

Average 0 ,. 000004 0.007844 -0.000551 0.000251 -- -0.000013 -0.002461 0.000337 -0.000149 -- 

(B) [0]8 tested with end tabs 

I 12A60 1 0.000036 1 0.007640 1 -0.000504 1 0.000200 1 0.999985 1 -0.000039 ( -0.002237 

I 12B60 I .000030 1 .007590 1 -0.000502 ) .000226 ) .999981 1 -.000047 1 -.002392 .000360 1 -.000164 1 .9999731 

I 12C6U I .000058 1 .007560 1 -.000501 1 .000244 ) .999992 1 -.000024 1 -.002385 

I 12ll6D I .000038 I .007678 I -.000660 I .000351 I .999995 I -.000009 I -.002430 

I Average 
I 

0.000041 1 0.007617 1 -0.000542 1 0.000255 1 -- 1 -0.000030 1 -0.002361 

(c) [go18 
12A2E -0.000055 0.091677 44.8045 -1122.93 0.999282 -0.000001 -0.001378 

12B2E -.oouo99 .093973 27.2694 -674.15 .998667 -;000008 -.000441 

12C2E (4 (4 (a) (4 (4 (4 (a) 

12U2E -.000065 .090772 38.7606 -1002.55 .998404 .000010 -.002449 

Average -0.000073 0.092141 36.9448 -933.21 -- 0.0 -0.001423 

0.000321 ) -0.000132 lo.9999751 

.000401 1 -.000197 1 .999989) 

.000415 I -.000206 I .999994 I 
0.000374 I -0.000175 -- l I 

-1.29771 28.3715 I 0.487095 

-4.48054 1 96.6977 1 .874665! 

(4 I (a) I (a) I 
5.21003 I -140.309 I .583636 I 

-0.18941 I -5.0799 I -- I 
aparameters not determined because of insufficient data. 



TABLE III. - CONTINUED 

Specimen 
Number 

aoxx alxx,GPa-1 a3xx,GPa-3 a4xx,GPa-4 R2xx aoxy a1xys GPa-l a3xy, GPa-3 a4xy,GPa-4 R2xy 

(D) [+45h 

3A2U -0.uuuo95 0.051266 -0.307545 8.73014 0.999815 0.000045 -0.037572 0.082679 -7.06284 0.999795 

3B2U -.UUUO36 .049278 .542667 4.08179 .999526 .000065 -0.036852 .108815 -7.73062 .999864 

3C2U -.OOUU61 .049534 .602761 3.35371 .999423 .000050 -.038369 .031741 -7.04677 .999930 

3u2u -.ouuu44 .049747 .489131 4.74174 .999448 .000080 -.038504 .354106 -9.63648 .999816 

Average -0. uuuo59 0.049956 0.331754 5.22685 -- 0.000060 -0.037824 0.144335 -7.86918 -- 

3A2E -0.000079 0.050027 -0.284407 8.05195 0.999879 0.000088 -0.038452 0.465900 -9.05145 0.999663 

3B2E -.000085 .049583 -. 197236 7.40266 .999908 .000087 -.040442 .585472 -10.09255 .999586 

3C2E -.000049 .052892 .975107 2.62297 .999391 .000044 -.035326 -.321907 -5.37215 .999992 

3U2E -.000055 .050012 .284195 5.71111 .999534 '.000107 -.040193 .921760 -12.24709 .999128 

Average -0.000067 0.050629 0.194415 5.94717 -- 0.000082 -0.038603 0.412806 -9.19081 -- 

(F) CWW-4WOls 
4A2E -0.000064 0.020595 -0.078631 0.240327 0.999560 0.000055 -0.007238 0.072758 -0.206606 0.988363 

4B2U -.000041 .020477 - .060419 .204262 .999692 .000009 -.006004 .007018 -.026688 .999743 

4C20 -.000037 .020269 -.051617 .165626 .999709 .000061 - .006659 .038092 -.109762 .998184 

4020 -.000054 .020339 -.076720 .240454 .999656 .000064 -.007002 .063251 -..180584 .995769 

Average -0. ouoo49 0.020420 -0.066847 0.212667 mm 0.000047 -0.006726 0.045280 -0.130910 -- 



TABLE III. - CONTINUED 

Specimen aoxx alxx,GPa-1 a3xx,GPa-3 a4xx,GPa-4 R2xx aoxy alxy,GPa-l a3xy,GPa-3 a4xy,GPa-4 R2xy 
Number 

(G) l?WW-WOls 

4A2D -0.000011 0.019067 -0.005120 0.018309 0.999977 0.000005 -0.005595 -0.002565 0.001927 0.999988 

4B2E -.000007 .019117 -.006745 .019862 .999964 .000009 -.005705 -.002316 .001662 .999981 

4C2E -.OUUO18 .020204 -.014597 .034336 .999965 .000006 -.005900 -.001737 .000190 .999982 

4U2E 0.0 .018467 -.005086 .015886 .999939 .000001 -.005705 -.002274 .001898 .999976 

Average -0.000009 0.019214 -0.007887 0.022098 -- 0.000005 -0.005726 -0.002223 0.001419 -- 
+ 

(HI CWOl2s 

6A2D ‘-U.000016 0.014533 -0.009690 0.018227 0.999993 0.000032 -0.000816 0.004268 -0.007112 0.938259 

6B2U .000013 .013544 -.002376 .002831 .999931 .000015 -.000732 .001604 -.001186 .996516 

6C2D -.000048 .014395 -.013528 .018166 .999866 .000012 -.000602 .000574 .000030 .992033 

6D2D .000008 .013489 -.001373 .003162 .999872 -.000009 -.000595 .000341 .000528 .996116 

Average -0.000011 0.013990 -0.006742 0.010597 -- 0.000013 -0.000686 0.001697 -0.001935 -- 

(J) CWOlx 
6A2E 0.000012 0.013926 -0.000809 0.002193 0.999975 0.000018 -0.000634 0.001405 -0.000883 0.992503 

6B2E .uooo19 .013837 -.001622 .003710 .999978 .000011 -.000562 .000637 .000178 .988584 

6C2E .000008 .013841 .000738 -.000236 .999964 -.000003 .-.000633 .001257 -.000746 .992!i62 

6D2E .000032 .013606 .001775 -.001550 .999981 .000016 -.000679 .001439 - .000985 .993412 

Average 0.000018 0.013803 0.000021 0.001029 -- 0.000011 -0.000627 0.001185 -0.000609 -- 



TABLE III. - CONTINUED 

Specimen 
Number 

aoxx alxx,GPawl a3xx,GPa-3 a4xx,GPa-4 R2xx aoxy alxy,GPaml a3xy,GPa'3 a4xy,GPa-4 R2xy 

(lUA2D 1 0.0000151 0.009672 1 -0.001045 1 0.000764 

llOB2U 1 -.0000051 .009880 [ -.001155 1 .000838 

llOC2D 1 -.U001121 .010069 1 -.00128l 1 .000746 

(lOU2D 1 -.OOOOOll .009959 1 -.000785 1 .000495 

I Average I -0.000026 I 0.009895 I -0.001067 I 0.000711 

K) [02/90/O] 

0.999991 

.999992 

.999998 

.999996 

-- 

, 

0.000004 -0.000742 0.000199 0.000021 0.999071 

-.000007 -.000750 .000116 .000119 .999458 

.000026 -.000562 .000080 -.000009 .999601 

.000021 - .000890 .000449 -.000174 .998787 

.000011 -.000736 .000211 -.000011 -- 

(L) [902/0/9OlS 

lUA2E u.oouo75 0.021361 0.193830 -0.417164 0.999692 0.000022 -0.000908 0.015414 -0.027652 0.902251 

1082E .uuo177 .020478 .189558 -.424839 .998275 .000018 -.000682 .013369 -.023448 .611944 

lOC2E .uuuoo5 .024013 .107271' -.235270 .999591 .000007 -.000644 .007760 -.010310 .883699 

lOD2E .000054 .023695 .090570 -.I64033 .999551 .000006 -.000995 .020673 -.040618 .940597 

Average 0.000078 0.022387 0.145307 -0.310327 -- 0.000013 -0.000807 0.014304 -0.025507 -- 

(M) [90/45/90/-451s 

2A2U -0.000092 0.047199 -1.32199 9.8500 0.997742 0.000016 -0.008975 0.136759 -1.18632 0.999155 

2B2D -.000125 .049214 -1.43223 10.8178 .997515 .000044 - .009763 .266637 -1.96199 .999506 

1 2C2D 1 -.OUU160( .052497 1 -2.19396 1 14.7036 1 .997845 1 -.0000041 -.0094971 .220732 1 -1.67750 1 .999470( 

]2D2D 1 -.oou104~ .048461 1 -1.34077 1 10.3443 1 .996804 1 .0000091 -.009166) .I99300 1 -1.56136 1 .9993881 

IAverage I-O.UUO1201 0.049343 I -1.57224 I 11.4289 ] -- I 0.0000161 -0.0093501 0.205857 1 -1.59679 1 -- 1 



TABLE III. - CONTINUED 

Specimen aoxx 
Number 

alxx,GPa-l a3xx,GPa-3 a4xx,GPa-4 R2xx aoxy alxy,GPa-l a3xy,GPa-3 a4xy,GPa-4 R2xy 

c 
(N) [45/90/-45/9O]s 

8A2E -0.000152 0.050317 -2.04099 14.8734 0.999222 0.000010 -0.008874 0.242344 -1.88013 0.999133 

8B2E -.000172 .052823 -2.31638 15.6263 .996849 .000032 -.010208 .416085 -2.99439 .998837 

8C2E -.000070 .046978 -1.29561 9.6602 .999638 .000009 -.008915 .171998 -1.39202 .999650 

802E -.000179 .050551 -2.10216 14.8717 .999092 .000062 -.009652 .368997 -2.58139 .998031 

Average -0.000143 0.050167 -1.93879 13.7579 -- 0.000028 -0.009412 0.299856 -2.21198 -- 

(0) c45/90/-w9012s 
9A2E -U.UOUOO6 0.045128 -0.67534 6.54505 0.999047 

9B2E -.000122 .050183 -1.81714 12.67008 .998690 

9C2E -.000050 .048897 -1.11600 8.74676 .998445 

9D2E -.000099 .048799 -1.38947 9.53658 .99320 

Average -U.U00069 0.048252 -1.24949 9.37462 -- 

-0.000011 -0.008496 0.065237 -0.79898 0.998674 

-.000008 -.009078 .211586 -1.61912 .999488 

-.000004 -.008876 .091570 - .92396 .999026 

-.000003 -.009054 .I74705 -1.28628 .999658 

-0.000007 -0.008876 0.135775 -1.15709 -- 

(PI [O/45/0/-451s 

2A2E -0.000016 0.013552 -0.000672 0.000530 0.999999 0.000024 -0.008392 -0.001921 0.001148 0.999995 

2B2E -.000008 .012885 -.000563 0.000339 0.999999 -;000002 -.008286 -.001884 .001274 .999998 

2C2E -.ouoo17 .012830 -.000407 .000163 .999998 .000016 -.008380 -.001599 .001078 .999997 

2D2E .oouoo4 .013193 -.000690 .000541 .999998 .000005 -.008542 -.001856 .001177 .999996 

Average -0.000009 u.013115 -0.000583 0.000393 -- 0.000011 -0.008400 -0.001815 0.001169 -- 



TABLE III. - CONTINUED 

Specimen aoxx alxx ,GPa-l a3xx,GPa-3 a4xx,GPa-4 R2xx 
Number 

aoxy alxy,GPa-l a3xy,GPa-3 a4xy,GPa-4 R2xy 

(Q) [45/O/-45101s 

8A2D -U.OUUU24 0.013034 -0.001228 0.001168 0.999996 -0.000006 -0.007630 -0.001694 0.001383 0.999997 

8820 -0.000003 , .U13056 -.001501 .001822 .999994 -.000011 -.008425 -.001626 .001152 .999992 

8C2U -.000004 .012997 -.002737 .003641 .999998 .000013 -.008788 -.002234 .001177 .999997 

8U2D -.uuuoo3 .013056 -0.000884 .000732 .999998 .000022 -.008936 -.001752 .001299 .999998 

Average -0.000009 0.013036 -0.001588 0.001841 -- 0.000005 -0.008445 -0.001827 0.001253 -- 

9A2D U.UUUU34 0.013103 -0.002300 0.002142 0.999998 -0.000002 -0.009411 0.000155 -0.000751 0.999999 

YB2D -.000022 .012931 -.001205 .001017 .999998 .000010 -.008305 -.001397 .000984 .999999 

YCPD .uoo155 .013705 -.002324 .001830 .999999 .000007 -.008859 -.000270 .000036 .999999 

YD2U -.oouo29 .012754 -.001036 .000655 .999998 ; 000001 -.008357 -.001300 .001004 .999998 

Average U.000035 0.013123 -0.001716 0.001411 -- 0.000004 -0.008733 -0.000703 0.000318 -- 

' (S) [45/O/-45/0]2S tested with end tabs 

YA3D -0.000003 0.012846 -0.001896 0.001822 0.999969 0.0 -0.008266 -0.000774 0.000281 0.999978 

9830 -.000008 .012624 -.000276 -.000430 .999972 .000003 - .007946 - .001929 .002033 .999974 

YC3U -.000002 .013078 -.000233 -.000759 .999978 0.0 - .008529 -.002257 .002521 .999975 

9D3D -.000016 .012779 -.001777 .001490 .999960 .000003 -.008274 -.001238 .001212 .999962 

Average -0.000007 0.012832 -0.001046 0.000531 -- 0.000002 -0.008254 -0.001550 0.001512 -- 



TABLE III. - CONTINUED 

Specimen 
Number 

aOxx alxx,GPa-1 a3xx,GPa-3 a4xx,GPa-4 R2xx aoxy alxy,GPa-1 a3xy,GPa-3 a4xy,GPa-4 R2xy 7 

(T) [+45/0/~45/0/&45/0/&45]T 

5A2U -0.000018 0.020870 0.007992 -0.007403 0.999998 -0.000011 -0.013571 -0.0’14515 0.013779 0.999998 

5820 -.000014 .019149 .006166 -.004594 .999999 -.000003 -.013187 -.013300 .010053 .999996 

5C2D -.ooouu5 .019648 .004942 -.004224 .999998 .000014 -.013410 -.013872 .015457 .999998 

5D2Db -.000002 .019522 .004827 -.004702 .999999 .OOOOl2 -.012773 -.009116 .007768 .999988 

Average -0.000010 0.019797 0.005982 -.005231 -- 0.000003 -0.013235 -0.012701 0.011764 -- 

(u) [+45/90/r45/90/+45/90/~45]T 

5A2E -U.UUUUtll 0.040467 -0.222561 1.83689 0.999928 0.000044 -0.013994 0.059080 -0.623788 0.999930 

5B2E -.000046 .039073 -.138916 1.54680 .999937 .000003 -.012765 .003680 -.407922 .999930 

5C2E -.000036 .040315 -.183805 1.53043 .999979 -.000007 -.014119 .010184 -.375622 .999970 

5U2EC -.000040 .039365 -.066713 .85229 .999990 .000036 -.013715 -.015828 -.200684 .999922 

Average -0.000051 0.039805 -0.152999 1.44160 -- 0.000019 -0.013648 0.014279 -0.402004 -- 

(V).jD2/45/02/-45/02IS 

llA2U 0.000006 0.009963 -0.001778 0.001488 0.999990 0.000003 -0.005265 -0.000050 0.000020 0.999999 

lltJ2U -.000002 .009924 -.000965 .000691 .999982 -;000022 -.005381 -.000062 .000048 .999999 

llC2D -.OUUU16 .009744 -.001221 .000926 .999996 .000003 -.005407 .000122 -.000294 .999981 

llU2U -.000011 .009585 -.000868 .000437 .999998 -.000004 - .005392 -.000131 .000120 .999995 

Average -0.000006 0.009804 -0.001208 0.000886 -- -0.000005 -0.004186 -0.000030 -0.000027 -- 

bDifferent layup: [&45/0/&45/mS CDifferent layup: Clt45/90/f45/mS 

Y 



TABLE III. - CONTINUED 

Specimen 
Number 

aoxx alxx,GPa-l a3xx,GPa-3 a4xx,GPa-4 R2xx aoxy alxy,GPa-l a3xy,GPa-3 a4xy,GPa-4 R2xy 

(W) [02/45/02/-45/02]S tested with end tabs 

llA6D 0.000030 0.009372 -0.000774 0.000445 0.999995 -0.000026 -0.005146 -0.000122 0.000046 0.999997 

llB6D .UOOO26 .009423 -.000862 .000445 .999996 -.000016 -.005171 -.000050 .000025 .999997 

llC6D .000008 .009681 - .000922 .000450 .999999 -.000028 -.005259 .000072 -.000040 .999998 

llU6D .OOUU23 .009474 -.001087 .000643 .999993 -.ooooi3 -.005259 .000236 -.000243 .999956 

Average 0.000022 0.009488 -0.000911 0.000496 -- -0.000021 -0.005209 0.000034 -0.000053 -- 

llA2E -0.000043 0.062657 -4.03664 54.4694 0.997706 -0.000015 -0.005315 0.201073 -2.94882 0.997862 

llB2E -.UUUU43 .065051 -6.95329 94.6553 .997251 - .000009 -.004560 - .508579 4.60618 .989498 

llC2E -.000141 .071931 -9.80587 109.7312 .996549 .000006 -.005373 .I43504 -1.98642 .998029 

llU2E -.000239 .074656 -9.62243 94.0970 .991249 -.000021 -.005151 .151246 -2.81785 .9993,44 

Average -0.000117 0.068574 -7.60456 88.2382 -- -0.000010 -0.005100 -0.003189 -0.78673 -- 

(Y) [(90/0)2/45/O/-45/01, 

7A2D -U.ODOOO7 0.012652 0.000055 -0.000692 0.999954 -0.000008 -0.002754 0.000501 -0.000300 0.999898 

7B2U -.oouo14 .012882 -.005494 .006319 .999915 .000004 -.002584 .000349 -.000208 .999988 

7C2U -.000008 .012490 .002390 -.002414 .999911 -.000025 .-.002713 .000472 -.000345 .999936 

7D2D -.OOUUO8 .012609 .002428 -.002698 .999926 .000013 -.002795 .000762 -.000682 .999729 

Average -0.000009 0.012658 -0.000155 0.000129 -- -0.000004 -0.002712 0.000521 -0.000384 -- 



TABLE III. - CONCLUDED 

Specimen aOxx alxx,GPa-1 a3xx,GPa-3 a4xx,GPa-4 R2xx 
Number 

aoxy alxy,GPa-1 a3Xy,GPa-3 a4xy,GPa-4 R2xy 

(Z) [(0/90)~/45/9~/-~~/9~1~ 

7A2E 0.000018 0.020105 0.013406 0.001845 0.999763 -0.000002 -0.002683 0.000899 0.001089 0.999759 

7B2E .000056 .019818 .025694 -.026835 .999872 -.000007 -.002620 .002238 -.002802 .999930 

7C2E .000075 .020284 .018222 -.012405 .999816 - .000009 -.002683 .001870 - .001949 .999791 

7D2E .000050 .020416 .030877 - .037492 .999811 -.000003 - .002889 .003295 -.004353 .999807 

Average I 0.0000501 0.020156 I 0.022050 I -0.018722 I -- I -0.000005~ -0.002719, 0.002076 I -0.002004 I -- I 



TABLE IV. - TENSILE ELASTIC PROPERTIES 

Specimen E,, GPa 
Number 

vxY Ftu, MPa %U 

(A) CO18 

12AZD I 125.3 I .3422 
I 

1291 I .00977 I 
12B2D I 127.4 I .3011 

I 
1265 1 .00933 1 

12C2D 
I 

132.6 
I 

.3120 
I 

1250 1 .0089d 1 
I 

12D2D 125.0 .3004 1136 .00855 

Average 127.5 .3138 1236 .00914 

(B) [0]8 tested with tabs 

I 12D6D I 130.2 I .3165 I 1049 I .00791 I 

I Average 
I 

131.3 
I 

.3100 
I 

(c) [go18 

I 12A2E I 10.91 I .0150 I 37.72 I .00369 1 
I 12B2E I 10.64 1 .0047 I 39.28 I -.00362 1 

12C2E b b 11.58a .00064a 

I 12D2E I 11.02 I .0270 I 38.03 1 .00342 1 

I Average I 10.85 I .0154 I 38.34 I .00358 I 
(D) ih451zs 

1 3A2D 1 19.51 I .7329 1 158.7 1 .01273 1 

I 3B2D 1 20.29 1 .7478 1 158.1 -1 ~~ ~~~ .0124fl 

3C2D 20.19 .7746 158.5 .01215 

3D2D 20.10 .7740 158.2 .01267 

Average 20.02 .7571 158.4 .01249 

aNot included in average. 
bElastic constants not determined because of insufficient data. 
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TABLE IV. - CONTINUED 

Specimen E x, GPa vxY Ftu, MPa "tu 
Number 

ii). [-+4512s 

I 3A2E 19.99 .7686 167.0 .01329 

3B2E 20.17 .8157 171.4 .01379 

-3CZE 18.91 .6679 139.9 ’ .01092 

20.00 -~ 3D2E .8037 163.9 .01352 

Average 19.75 .7625 160.6 .01288 

(F > CW%W901s 
I 4A2E .3514 421.8 .00928 ~~ 

4BZD.- 

I 
-... 

48.56 --..I- 

48~.84 
~~ 

.2932 344.6 .00733 

4C2D 49.34 .3285 373.7 .00799 

4D2D 49.17 .3443 443.6 .00955 

Average 48.97 .3294 395.9 .00854 

(‘4 CW9%WOls 
I 4A2D 52.45 .2934 506.0 .01004 

?BZE 52.31 .2984 503.7 .00998 

4C2E 49.50 .2920 482.1 .00972 

4D2E 54.15 .3089 546.4 .01044 
..- --.-~- .~ 
Average 52.05 .2980 509.6 .01004 

6A2D I 68.81 .0561 292.4a .00405a 

6B2D 73.83 .0540 682.7 .00902 

6C2D 69.47 .0418 683.5 .00923 

--6D2D 74.14 .0441 633.6 .00864 

Average 71.48 .0490 666.6 .00897 

aNot included in average. 
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TABLE IV. - CONTINUED 

Specimen E,, GPa 
Number 

vxY Ftu, MPa &tu 

I 6D2E I 73.50 

IAverage I 72.45 

(J> CWOlzs 
.0456 708.5 .01007 

.0407 I 628.7 I .00868 

I 
.0458 I 694.8 I .00960 

.0499 I 734.4 I .OlOll 

.0454 I 691.6 I .00962 

(K) CO2/9O/Ols 
lOA2D 103.4 .0767 1028 .00956 

lOB2D 101.2 .0759 1023 .00972 

lOC2D 99.32 .0558 1124 .01064 

lOD2D 100.4 .0894 1102 .01063 

Average 101.1 .0744 1069 .01014 

(L) c902/w901s 

lOA2E 46.81 .0425 365.6 .00990 

lDB2E 48.83 .0333 333.3 .00879 

lOC2E 41.64 .0268 371.7 .OlOlO 

lOD2E 42.20 .0420 343.5 .00943 

Average 44.67 .0361 353.5 .00955 

(Mj~ [90/45/90/-451s 
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TABLE IV. - CONTINUED 

Specimen 
Number 

E x, GPa QY Ft,,, MPa EtU 

(N) [45/90/-45/9O]s 

8A2E I 19.87 

--I 
.1764 161.4 .00911 

.1933 163.9 .00939 

.1898 166.8 .00893 

.1909 162.8 .00928 

.1876 163.7 .00918 

(0) cww-w9012s 

(V CW45/%4515 

(Q) C45/%45/Ols 
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TABLE IV. - CONTINUED 

Specimen E 
Number 

x, GPa vxY Ftu, Mia %u 

(R) [45/%45/012s 

9A2D 
I 

76.32 
I 

.7183 
I 

763.3 
I 

.00964 

9B2D 
I 

77.34 1 .6422 
I 

706.1 
I 

.00899 

9C2D 72.96 .6464 802.4 .01066 

9D2D 78.41 .6552 742.5 .00916 

Average 76.20 .6655 753.6 .00961 

(S) [45/O/-45/0]2S tested with end tabs 

9A3D 77.84 .6435 624.8 .00780 

9B3D 79.21 .6294 617.8 .00767 

9C3D 76.46 .6521 616.6 .00789 

9D3D 78.26 .6475 530.4a .00659a 

Average 77.93 .6432 619.7 .00779 

(T) [&45/0/945/0/&45/0/&45]T 

5A2D 1 47.92 1 .6503 I 499.5 I .01094 

5B2D 52.22 .6887 522.2 .01037 

5C2D 50.90 .6825 457.3 .00911 

5D2D 
I 

51.22c 
I 

.6543c 
I 

512.2c 
I 

.01029c 

Average 
I 

50.28 
I 

.6732 .01014 

5A2E 24.71 .3458 224.2 

5B2E 25.59 .3267 227.8 

5C2E 24.80 .3502 225.9 

5D2E 25.4Oc .3484c 181.5c 

Average 25.03 .3411 226.0 

aNot included in average. 
CNot included in average; see Table I. 

.01094 

.01160 

.01087 

.00759c 

.01114 
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TABLE IV. - CONTINUED 

Specimen E x, GPa vxY Ftu, MPa &tu 
Number 

(v) ~02/45/02/-45/021s 

llA2D 100.4 .5285 738.8 .00711 

llB2D 100.8 .5422 645.2 .00621 

llC2D 102.6 .5549 889.5 .00809 

ilD2D 104.3 .5626 947.7 .00841 

Average 102.0 .5469 805.3 .00745 

(W) [02/45/02/-45/02]S tested with end tabs 

106.7 .5491 1062 .00974 

106.1 .5488 1104 .00987 

p&i--I -103.3 .5433 1035 ,00947 
-. .----. 

llD6D 105.6 .5551 948.3 .00888 

Average 105.4 .5491 1046 .00949 

(X) c~~~/~~/~~~/-~~/~~~l~ 
llA2E 15.96 .0848 107.9 .00985 

llB2E 15:37 .0701 103.8 .01023 

k2E 13.90 .0747 105.5 .00892 

llD2E 13.39 .0690 102.5 .00746 

pe-Fi;e .I 14.58 .0744 104.9 .00912 

(Y) [~90/0)~/45/0~-4~/~1~ 

7A2D 79.04 .2176 787.8 .00966 

--7B2D 77.63 .2006 767.1 .00954 

7C2D 80.07 .2172 805.9 .01019 

-- 7D2D 79.31 .2217 767.9 .00980 

Average 79.00 .2142 782.2 .00980 
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TABLE IV. - CONCLUDED 

Specimen E x, GPa v'xY Ftus MPa 
Number 

(Z) [(O/90) 2/45/90/-45/9Ols 

3U il 
.01005 

7B2E 50.46 .1322 473.3 .01062 

I 7C2E 
I 

49.30 1 .1323 ( 459.3 1 .01042 

)iE 1 48.98 1 .1415 1 473.7 1 .01103 
I I I r 

Average 49.61 .1349 I 463.0 .01053 
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TABLE V. - LAMINATE TENSILE ELASTIC CONSTANTS. 

Laminate 

co18 

co18 d 

[go18 

[*451pj 

[45/O/-45/90& 

[45/90/-45101s 

CWQS 

cw9012s 

co,/ go/ 01s 

[9O,/W9Ols 

[90/45/90/-45]s 

[45/90/-45/9O]s 

[45/90/-45/90]2s 

E x, GPa vxY 

Experi- Laminate Experi- Laminate 
mental Analysis Error% mental Analysis Error% Ftu, MPa %U 

127.5 -- -- .3138 -- -- 1236 .00914 

131.3 -- -- .3100 -- -- 1219 .00891 

10.85b -- -- .0154b .0261 69.5 38.34b .00358b 

19.88a 19.61 -1.4 .7598a .7354 -3.2 159.5a . 0126ga 

48.97 51.36 4.9 .3294 .3070 -6.8 395.9 .00854 

52.05 51.36 -1.3 .2980 .3070 3.0 509.6 .01004 

71.48 70.54 -1.3 .0490 .0482 -1.6 666.6b . 00897b 

72.45 70.54 -2.6 .0454 .0482 6.2 691.6 .00962 

101.1 100.3 -0.8 .0744 .0836 12.4 1069 .01014 

44.67 40.70 -8.9 .0361 .0339 -6.1 353.5 .00955 

20.27 23.32 15.0 .1895 .2011 6.1 175.5 .01042 

19.93 23.32 17.0 .1876 .2011 7.2 163.7 .00918 

20.72 23.32 12.5 .1840 .2011 9.3 184.7 .01122 

(a) average of 8 tests (b) average of 3 tests (d) tested with end tabs 

CA 
U 



TABLE V. - CONCLUDED 

E x, GPa v'xY 

Experi- Laminate Experi- Laminate 
Laminate mental Analysis Error% mental Analysis Error% Ftu, MPa 3U 

c0/45/0/-4515 76.25 75.29 -1.3 .6405 .6490 1.3 799.5 .01031 

c45/o/-45/035 76.71 75.29 -1.9 .6478 .6490 0.2 607.1 .00769 

L45/O/-45/O]2s 76.20 75.29 -1.2 .6655 .6490 -2.5 753.6 .00961 

[45/0/-45/012s d 77.93 75.29 -3.4 .6432 .6490 0.9 619.7b .00779b 

[f45/0/f45/0]S 51 .22c 50.04 -2.3 .6543c .6983 6.7 512.2c .0102gc 

L+45/0/r45/0/+45/0/+45]T 50.28b 50.03, -0.5 .6732b .6974 3.6 493.0b .01014b 

[+45/90/+45/x$ 25.40c 25.56 0.6 . 3484c .3567 2.4 181.5c .00759c 

L+45/90/r45/90/+45/90/+451T 25 .03b 25.52 2.0 .3411b .3557 4.1 226 .Ob .01114b 

&/45/02/-45/02& 102.0 102.8 0.8 .5469 .5513 0.8 805.3 .00745 

[0#5/02/-45/02& d 105.4 102.8 -2.5 .5491 .5513 0.4 1046 .00949 

s902/45/90,/-45/902]s 14.58 17.88 22.6 .0744 .0959 28.9 104.9 .00912 

s(9o/0),/45/0/-45/01s 79.00 76.42 -3.3 .2142 .2135 -0.3 782.2 .00980 

1(0/90),/45/90/-45/90$ 49.61 47.38 -4.5 .1349 .1324 -1.9 463.0 .01053 

(b) average of 3 tests (c) one test (d) tested with end tabs 
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Figure 2. - Stress-strain curve for specimen 2A2E. 
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Figure 3. - Stress-strain curve for [D], laminate, 
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Figure 4. - Stress-Strain curve for [D], laminate tested with end tabs, 



-Average polynomial fit 
0 12A2E 
0 12B2E 

12C2E 
12D2E 

0 .-I II II II I I IIIIIlll lllllllll llllllIII lllllllll lllllllll 
-.OOl 0 .OOl .002 .003 .004 .005 

Strain 

Figure 5. - Stress-strain curve for [go]8 laminate! 
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Figure 6. - Stress-strain curve for [k45]2s laminate. 
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Figure 7. - Stress-strain curve for [k45]2s laminate, 
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Figure 8. - Stress-strain curve for [45/O/-45/901s laminate. 
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Figure 9. - Stress-strain curve for [45/90/-45/Ols laminate, 
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Figure 10. - Stress-strain curve for [90/O]2s laminate. 
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Figure 11. - Stress-strain curve for [0/9O],S laminate. 
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Figure 12. - Stress-strain curve for [0,/9O/OJ, laminate. 
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Figure 13. - Stress-strain curve for [902/O/90Js laminate. 
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Figure 14. - Stress-strain curve for [90/45/90/-451, laminate. 
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Figure 15. - Stress-strain curve for [45/90/-45/9OJ laminate. 



200 F 

150 

100 

50 

0 

1 
k n/ 

EY 

-Average polynomial fit 

q 9B2E 
9C2E 

.005 

Strain 

.OlO .015 

Figure 16. - Stress-strain curve for [45/90/-45/90]2s laminate. 
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Figure 17. - Stress-strain curve for [O/45/0/-451s laminate. 
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Figure 18. - Stress-strain curve for [45/O/-45/Ols laminate. 
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Figure 19. - Stress-strain curve for [45/O/-45/O]2s laminate. 
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Figure 21. - Stress-strain curve for [~45/O/t45/?lS and [+45/O/i45/O/+45/O/z45]T laminates. 
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Figure 22. - Stress-strain curve for [+45/90/+45/Bjs and [+45/90/i45/90/+45/90/f45]T laminates. 
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Figure 23. - Stress-strain curve for [02/45/02/-45/02JS laminate. 
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Figure 24. - Stress-strain curve for [02/45/02/-45/02]s laminate tested with end tabs, 
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Figure 25. - Stress-strain curve for [90,/45/90,/-45/902]S laminate, 
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Figure 26. - Stress-strain curve for [(90/0),/45/0/-45/O], laminate, 
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Figure 27. - Stress-strain curve for [(O/90)2/45/90/-45/90]s laminate. 
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Figure 29. - Tangent modulus and Poisson's ratio for [O], laminate. 
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Figure 31. - Tangent modulus and Poisson's ratio for [go], laminate. 
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Figure 32. - Tangent modulus and Poisson's ratio for [H15]2s laminate. 
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Figure 33. - Tangent modulus and Poisson's ratio for [~k45]~~ laminate. 
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Figure 34. - Tangent modulus and Poisson's ratio for [45/O/-45/901s laminate. 
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Figure 35. - Tangent modulus and Poisson's ratio for [45/90/-45/O]s laminate. 
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Figure 37. - Tangent modulus and Poisson's ratio for [O/90],, laminate. 
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Figure 38. - Tangent modulus and Poisson's ratio for [0,/90/O], laminate. 
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Figure 39. - Tangent modulus and Poisson's ratio for [90,/O/90], laminate. 
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Figure 40. - Tangent modulus and Poisson's ratio for [90/45/90/-45]S laminate. 
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Figure 41. - Tangent modulus and Poisson's ratio for [45/90/-45/901S laminate. 
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Figure 42. - Tangent modulus and Poisson's ratio for [45/90/-45/90]2S laminate. 
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Figure 43. - Tangent modulus and Poisson's ratio for [O/45/0/-45JS laminate. 
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Figure 44. - Tangent modulus and Poisson's ratio for [45/0/-45/O], laminate. 
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Figure 45. - Tangent modulus and POiSSOn's ratio for [45/D/-45/O]2S laminate. 
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Figure 46. - Tangent modulus and Poisson's ratio 

for [45/0/-45/O]2s laminate tested with end tabs. 
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Figure 47. - Tangent modulus and Poisson's ratio 
for [f45/0/f45bJJS and [f45/O/i45/O/+45/O/+45]T laminates. 
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Figure 48. - Tangent modulus and Poisson's ratio 

for [f45/90/f45/XWJS and [+45/9O/i45/90/+45/90/+45]T laminates. 
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Figure 49. - Tangent modulus and Poisson's ratio 

for [02/45/02/-45/02& laminate. 
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Figure 50. - Tangent modulus and Poisson's ratio 

for [02/45/02/-45/02]S laminate tested with end tabs. 
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Figure 51. - Tangent modulus and Poisson's ratio 

for [902/45/902/-45/902]S laminate. 
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Figure 52. - Tangent modulus and Poisson's ratio 
for [(90/0),/45/0/-45/O], laminate. 
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Figure 53. - Tangent modulus and Poisson's ratio 

for [(O/90)2/45/90/-45/90]S laminate. 
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Figure 54. - Cordell plot of Young's modulus, E,. 
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Figure 55. - Cordell plot of Poisson's ratio, vxy. 
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Figure 56. - Cordell plot of ultimate tensile strength, Ftu. 


